

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Photopyroelectric (PPE) Phase Spectroscopy for Sensitive Optical Absorption Coefficient and Thermal Diffusivity Measurement

A. Frandas^a; M. Chirtoc^a; R. M. Candea^a

^a Institute for Isotopic and Molecular Technology, Romania

To cite this Article Frandas, A. , Chirtoc, M. and Candea, R. M.(1992) 'Photopyroelectric (PPE) Phase Spectroscopy for Sensitive Optical Absorption Coefficient and Thermal Diffusivity Measurement', *Spectroscopy Letters*, 25: 8, 1155 — 1163

To link to this Article: DOI: 10.1080/00387019208017855

URL: <http://dx.doi.org/10.1080/00387019208017855>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PHOTOPYROELECTRIC (PPE) PHASE SPECTROSCOPY
FOR SENSITIVE OPTICAL ABSORPTION COEFFICIENT
AND THERMAL DIFFUSIVITY MEASUREMENT

Keywords: photothermal spectroscopy, photopyroelectric spectroscopy, absorption coefficient, thermal diffusivity.

A. Frandas, M. Chirtoc, and R.M. Candea

Institute for Isotopic and Molecular Technology,
POB 700, 3400 Cluj-Napoca 5, Romania

ABSTRACT

A novel spectroscopic method for the measurement of small relative changes of the optical absorption coefficient or thermal diffusivity is demonstrated, based on a sharp signal phase variation in PPE experiments, under well defined circumstances.

INTRODUCTION

The photopyroelectric (PPE) spectroscopy is an optical calorimetric technique¹ from the group of the photothermal methods for the optical and thermophysical characterization of materials. In principle, it is based on the measurement of the sample temperature increase due to absorption of radiation, by using a pyroelectric sensor placed in thermal contact with the sample. Most of the spectroscopic applications of the PPE method with periodic excitation are based on the signal amplitude monitoring, but the signal phase contains useful spectroscopic information as well^{2,3},

due to the specific propagation character of the thermal wave. In an infinite and homogeneous medium, it is described by a complex propagation operator with the real and imaginary parts accounting for the attenuation and dephasing of the thermal wave, respectively.

While investigating the spectral properties of a protonic conductor, $H(UO_2)PO_4 \cdot 4B_2O_5$, (HUP), we observed an unusually large PPE signal phase variation in the range $0.4-0.6\mu\text{m}$, where this material presents a significant change of the optical absorption coefficient. According to the PPE theory⁴, such an effect is the consequence of the change of the optical or thermal properties of the sample and may occur only under particular experimental conditions. The paper presents a sensitive method for the measurement of two sample-related parameters, based on this anomalous PPE phase spectrum.

THEORETICAL BACKGROUND

The general expression of the PPE signal⁴ depends on several optical and thermophysical sample properties, but two independent parameters, the thermal thickness αL and the optical thickness βL are sufficient to define the specific experimental configuration, described by a special case of the general expression, out of six possibilities⁵, denoted 1a-1c, 2a-2c. Here L is the sample thickness, β is the optical absorption coefficient, and:

$$a = (\pi f/\alpha)^{1/2} \quad (1)$$

is the diffusion length of the thermal wave, with α the thermal diffusivity and f the modulation frequency of the exciting light. A convenient way of visualizing the behavior of the PPE signal is the representation of the amplitude and phase surfaces as a function of the dimensionless parameters αL and βL , Fig.1. Our experiments on HUP were situated in the special cases 1b and 1c. The respective signals are proportional to the factor F :

$$F = \exp[-(1+i)\alpha L] \quad \text{if } 1 < \alpha L < \beta L \quad (\text{case 1b}), \quad (2)$$

$$F = \exp(-\beta L) \quad \text{if } 1 < \beta L < \alpha L \quad (\text{case 1c}). \quad (3)$$

The interpretation of Eqs.(2,3) is the following: in case 1b the optical thickness is larger than the thermal thickness. Consequently, the light will be rather absorbed within the sample than transmitted to the pyroelectric sensor. The absorbed fraction is converted into thermal waves which eventually reach the sensor with a phase lag of $\Psi = \alpha L$ rad and an attenuation of $\exp(-\alpha L)$, Eq.(2). In case 1c, the thermal thickness is larger than the optical thickness and the information reaching the sensor is dominated by the fraction of light $\exp(-\beta L)$, transmitted through the sample with no dephasing, Eq.(3). It follows that at the boundary between the 1b/1c cases, defined by $\alpha L = \beta L$ on the phase surface, there is a phase jump of $\Delta \Psi = \alpha L$ rad. This effect is illustrated in Fig.1, which is a numeric simulation of the signal phase based on the exact expression for the PPE signal⁴.

The anomalous phase behavior, not predicted by the special cases, consists in the local hump of this surface, centered at $\alpha L = \beta L = 6.27$. The anomaly is present also on the amplitude surface as a dip localized at $\alpha L = \beta L = 5.28$ and confirmed experimentally⁶.

The regular phase jump combined with the anomalous phase overshoot shown in Fig.1, yields a sharp total phase change of nearly 270deg upon the variation of either the αL or βL parameter about the value 6.27.

EXPERIMENTAL

After chemical preparation, the HUP substance in the form of a yellow powder was pressed to a slab with a thickness of 0.35mm.

The experimental setup is common for PPE spectroscopic investigations and was described in other works⁷. The source is a 12V/100W tungsten-halogen lamp. The radiation is modulated with a mechanical chopper driven by a synchronous motor and then focused with a quartz lens onto the $4 \times 0.5 \text{ mm}^2$ entrance slit of a Carl Zeiss Jena monochromator type SPM-2. The PPE cell attached to the exit slit consists of a $4 \times 3 \times 0.2 \text{ mm}^3$ PZT pyroelectric ceramic sensor provided with gold electrodes. One of its sides is blackened with china ink and is placed in thermal contact with the back of the

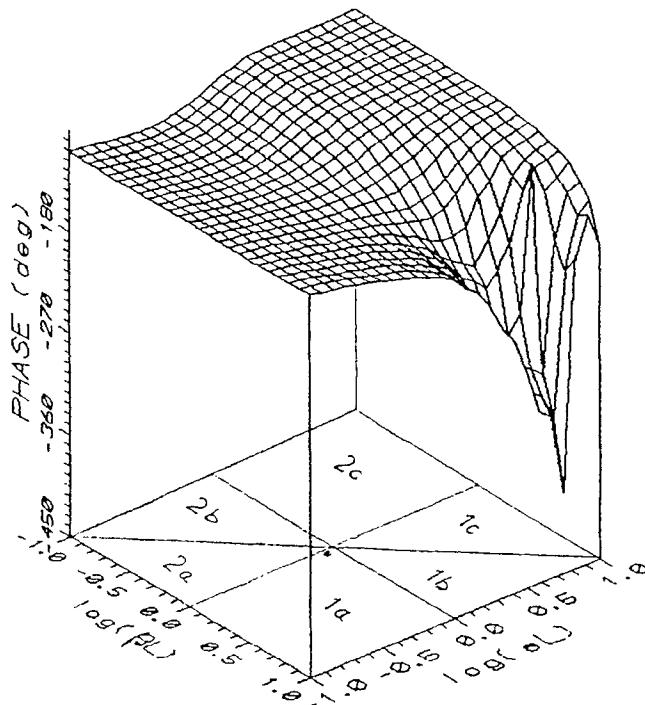


FIG.1. PPE signal phase surface vs. the optical and thermal thicknesses of the sample, (theory). Note the anomalous phase increase between $\log_{10}(aL)=\log_{10}(\beta L)=0.75-0.85$ superposed on the general phase decrease in case 1b.

sample slab, via a small quantity of silicone grease. The radiation having a spectral width of $0.005\mu\text{m}$ impinges on the sample front side. The signal from the detector having a capacity of 175pF is fed into an 100Mohm low noise preamplifier type Unipan 233.7 and then is processed by two lock-in amplifiers type Unipan 232 (Poland) in parallel, with the phase settings adjusted in quadrature one to the other. The spectral range $0.4-0.6\mu\text{m}$ was swept at the chopping frequencies $f=2, 4, 8, 16$ and 32Hz . The angle of the complex signal vector recorded on a X-Y plotter connected with

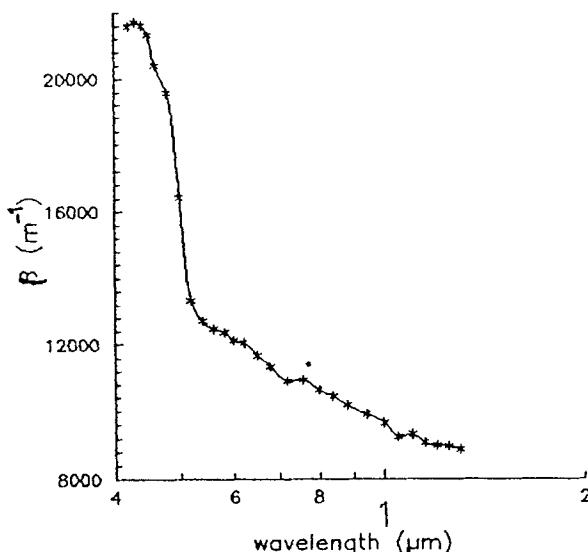


FIG.2. Optical absorption spectrum of $\text{H}(\text{UO}_2)\text{PO}_4 \cdot 4\text{H}_2\text{O}$ calculated from the experimental transmittance data.

the two lock-in instruments, yielded directly the phase spectrum which was subsequently corrected for the frequency dependent contribution of the electronics to the total phase.

The transmittance spectrum of the HUP sample was obtained with the same setup, with the difference that it was placed in front of the sensor, at a distance of 2mm. In this way the sample is thermally decoupled from the sensor and the signal amplitude, normalized to the spectrum of the bare detector, is proportional only to the fraction of the transmitted light. Due to the fact that the sample-sensor distance is small, the partial diffusion of light by the pressed powder does not affect the results.

RESULTS AND DISCUSSION

The optical transmittance data were used for the calculation of the absorption coefficient spectrum presented in Fig.2, showing

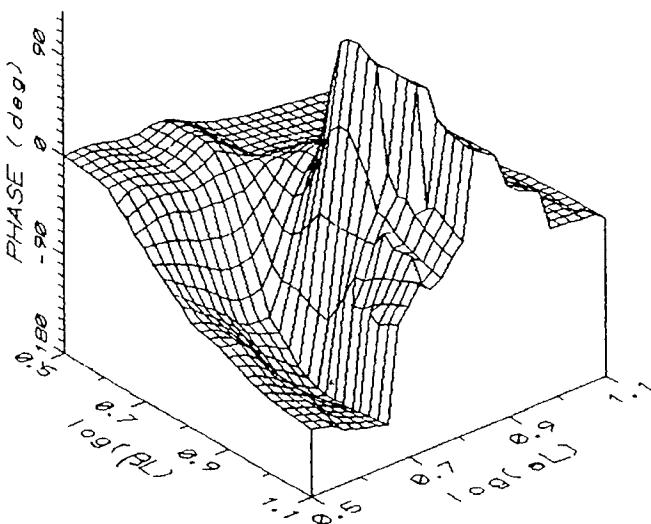


FIG.3. Same as in Fig.1, (experimental results).

a sharp increase below $0.5\mu\text{m}$ due to the strong absorption band of the uranyl ion.

The two parameters of the phase measurements, the radiation wavelength and the modulation frequency, had to be transformed into the coordinates αL and βL to allow for comparison with the theory. The data in Fig.2 were used for the transformation from the radiation wavelength to βL . The transformation from f to αL is based on Eq.(1) and on the assumption that the highest experimental phase value corresponds to the theoretical peak anomaly situated at $\alpha L=6.27$.

The Fig.3 shows the experimental phase surface, plotted versus the dimensionless coordinates. Obviously, the right corner of the theoretical surface in Fig.1 is closely reproduced experimentally, with an even greater anomalous hump. The cross sections along the two coordinates in the region with the steepest slope, are given in Fig.4. The relative phase sensitivities S_α and S_β are:

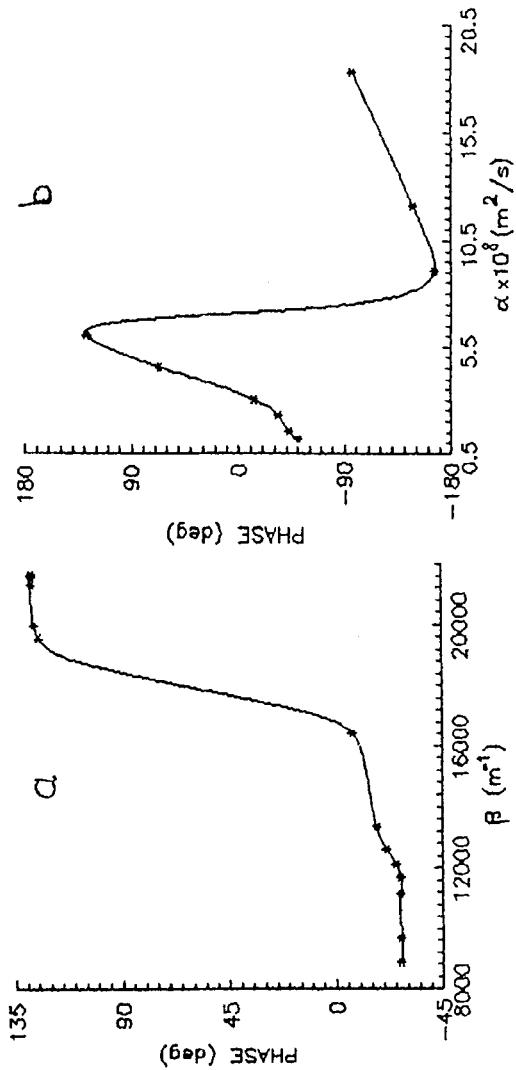


FIG. 4. Experimental PPE signal phase vs. the sample optical absorption coefficient, for $f=6\text{Hz}$ (a), and vs. the sample thermal diffusivity, for $\beta=1800\text{m}^{-1}$ (b). The arrows mark the useful regions for the phase spectroscopy of the two parameters.

$$S_\alpha = (\Delta\alpha/\alpha)/\Delta\varphi = 0.16\%/\text{deg} , \quad (4)$$

$$S_\beta = (\Delta\beta/\beta)/\Delta\varphi = 0.12\%/\text{deg} . \quad (5)$$

In the absence of the phase anomaly, the two sensitivities would be only of the order of 1%/deg. Assuming the phase measurement is performed with a resolution of 1deg, the figure for S_β is better than the capability of standard spectrophotometry, whereas S_α represents a far better performance than other thermal methods for the measurement of the thermal diffusivity. Additionally, the condition $al=6.27$ offers an indirect estimation based only on optical measurements for the absolute value of the thermal diffusivity $\alpha=6.05 \times 10^{-8} \text{ m}^2 \text{s}^{-1}$.

CONCLUSION

A novel method is presented for the determination of small relative variations of a sample's optical absorption coefficient or thermal diffusivity, surpassing the resolution of conventional methods. The possible applications are: evincing the phase transitions with small specific heat discontinuity, temperature coefficient measurement of the thermal conductivity, of the absorption coefficient and of the refractive index, etc. The method has all the advantages of the photopyroelectric technique concerning the sample, i.e. small quantity, minimum preparation required, no need for optical quality, small cell with in situ measurement capability. However, the method is feasible only under restrictive experimental conditions, for optically and thermally thick samples with $L=al$ in the range 5-7. This condition can be met experimentally to some extent by choosing an appropriate value for the sample thickness L .

REFERENCES

1. Coufal H., Mandelis A. *Ferroelectrics* 1991;118: 379.
2. Coufal H. *Photothermal Spectroscopy of Weakly Absorbing Samples Using a Thermal Wave Phase Shifter*. *Appl. Phys. Lett.* 1984;45:516.

3. Mandelis A. Frequency-Domain Photopyroelectric Spectroscopy of Condensed Phases (PPES): A New, Simple and Powerful Spectroscopic Technique. *Chem. Phys. Lett.* 1984;108: 388.
4. Chirtoc M., Mihailescu G. Theory of the Photopyroelectric Method for Investigation of Optical and Thermal Materials Properties. *Phys. Rev.* 1989;B40: 9606.
5. Chirtoc M., Mihailescu G., Bicanic D. Operational Diagram for Photopyroelectric Experiments with Periodic Excitation. In: Murphy J.C., MacEachlan-Spicer J.W., Aamodt L., Royce B.S.H. eds. Photoacoustic and Photothermal Phenomena II, Schawlow A.L. series ed. Springer Series in Optical Sciences Vol.62. Berlin: Springer Verlag 1990: 537-538.
6. Dadarlat D., Chirtoc M., Candea R.M., Frandas A., Bicanic D.D. The Anomalous Behavior of the Photopyroelectric Signal in the Critical Region of a Phase Transition, a New Support for the General Theoretical Model. In: Bicanic D.D. ed. Photoacoustic and Photothermal Phenomena III, Schawlow A.L. series ed. Springer Series in Optical Sciences. Berlin: Springer Verlag 1992: in press.
7. Chirtoc M., Candea R.M., Pelzl J. Photopyroelectric (PPE) Spectroscopy of Radiation Conversion Efficiency in Fluorescent Dye Ink Layers. *Appl. Spectroscopy* 1992: submitted.

Date Received: 05/08/92
Date Accepted: 06/09/92